

GAYATRI VIDYA PARISHAD COLLEGE FOR DEGREE AND PG COURSES(A) DEPARTMENT OF MATHEMATICS B.Sc., Honours in Mathematics MINOR

w.e.f 2023-24 Admitted Batch COURSE STRUCTURE

MATHEMATICS for MINOR

Year	Semester	Course	Title of the	No. of Hrs	No. of Credits
			Course	/Week	
			Differential	3	3
			Equations &		
			Problem Solving		
		1	Sessions		
			Differential	2	1
			Equations &		
	II		Problem Solving		
I			Sessions		
			Practical Course		

GAYATRI VIDYA PARISHAD COLLEGE FOR DEGREE AND PG COURSES(A) DEPARTMENT OF MATHEMATICS B.Sc., Honours in Mathematics MINOR COURSE

BLUE PRINT FOR MINOR SUBJECTS

	5X2=10		
I	UNIT	MARKS	CO'S
1	UNIT-1	2	CO-1
2	UNIT-2	2	CO-2
3	UNIT-3	2	CO-3
4	UNIT-4	2	CO-4
5	UNIT-5	2	CO-5
II	SECTION-B	3	'
5X10=50			
6 A or B	UNIT-1	10	CO-1
7 A or B	UNIT-2	10	CO-2
8 A or B	UNIT-3	10	CO-3
9 A or B	UNIT-4	10	CO-4
10 A or B	UNIT-5	10	CO-5

GAYATRI VIDYA PARISHAD COLLEGE FOR DEGREE AND PG COURSES(A) DEPARTMENT OF MATHEMATICS

B.Sc., Honours in Mathematics MINOR (THEORY and Practical)

w.e.f 2023-24 Admitted Batch

SEME STER	COURSE	TITLE	CREDITS	HOUR S	MARKS
II	I	Differential Equations	4	5	100

Course Outcomes:

- 1. After successful completion of this course, the student will be able to
 - 1. solve first order first degree linear differential equations.
 - 2. convert a non-exact homogeneous equation to exact differential equation by using an integrating factor.
 - 3. know the methods of finding solution of a differential equation of first order but not of first degree.
 - 4. solve higher-order linear differential equations for both homogeneous and non-homogeneous, with constant coefficients.
 - 5. understand and apply the appropriate methods for solving higher order differential equations.

CO: 1(UNIT-1) (No. of hours: 12)

Differential Equations of first order and first degree:

Linear Differential Equations - Bernoulli's Equations - Exact Differential Equations - Integrating factors - Equations reducible to

Exact Equations by Integrating Factors - i) Inspection Method ii) $\frac{1}{Mx+Ny}$ + iii) $\frac{1}{Mx-Ny}$

<u>CO:</u> 2(UNIT-2) (No. of hours: 12)

Differential Equations of first order but not of first-degree:

Equations solvable for p, Equations solvable for y, Equations solvable for x – Clairaut's equation - Orthogonal Trajectories:

Cartesian and Polar forms.

<u>CO:</u> 3(UNIT-3) (No. of hours: 12)

Higher order linear differential equations:

Solutions of homogeneous linear differential equations of order n with constant coefficients - Solutions of non-homogeneous linear differential equations with constant coefficients by means of polynomial operators (i) ax Q(x) = Sin(ax) (or)

Cos ax

CO: 4(UNIT-4) (No. of hours: 12)

Higher order linear differential equations (continued.):

Solution to a non-homogeneous linear differential equation with constant coefficients P.I. of f(D)y = Q when Q = bx k P.I. of f(D)y

= Q when Q = e axV, where V is a function of x P.I. of f(D)y = Q when Q = xV, where V is a function of x.

<u>CO:</u> 5(UNIT-5) (No. of hours: 12)

Higher order linear differential equations with non-constant coefficients:

Linear differential Equations with non-constant coefficients; Cauchy-Euler Equation; Legendre Equation; Method of variation of parameters

Course Outcomes:

- 1. Those opted this Differential equations can solve different differential equations under one or more conditions.
- 2. The student can have apply this differential equations in Geometry and Economics, Mechanics etc. They will get knowledge of drawing graphs. Students are capable to calculate intrinsic value of securities.
- 3. The students have a knowledge to solve the no of problems under various conditions while solving the problems in Engineering and other fields
- 4. Student acquires knowledge to find Newton's law of cooling and the light of the falling object in the study of engineering physics.
- 5. Student gets efficiency for finding the proportions of current in the function of current at different times.

Prescribed Text Book: A text book of mathematics for BA/BSc Vol I by N. Krishna Murthy & others, published by S. Chand & Company, New Delhi.

Reference Text Books:

- 1. Differential Equations and Their Applications by Zafar Ahsan, published by Prentice-Hall of India Pvt. Ltd, New Delhi-Second edition.
- 2. Ordinary and Partial Differential Equations by Dr. M.D, Raisinghania, published by S.Chand&Company, New Delhi.
- 3. Differential Equations with applications and programs S. Balachandra Rao & HRAnuradha-Universities Press.
- 4. Differential Equations -Srinivas Vangala&Madhu Rajesh, published by Spectrum University Press.